
Journal of Statistical Physics, Vol. 91, Nos. 3/4, 1998

Two-Point Correlations and Critical Line of the
Driven Ising Lattice Gas in a High-Temperature
Expansion
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Based on a high-temperature expansion, we compute the two-point correlation
function and the critical line of an Ising lattice gas driven into a nonequilibrium
steady state by a uniform bias E. The lowest nontrivial order already reproduces
the key features, i.e., the discontinuity singularity of the structure factor and the
(qualitative) £ dependence of the critical line. Our approach is easily general-
ized to other nonequilibrium lattice models and provides a simple analytic tool
for the study of the high-temperature phase and its boundaries.

I. INTRODUCTION

The study of non-equilibrium steady states (NESS) has attracted vivid
interest over the past decade. On the one hand, such studies are applica-
tion-driven, since NESS determine the physics of a wide range of important
problems, including, e.g., granular and traffic flow, surface growth, electro-
migration, and transport phenomena in biological systems. On the other
hand, there is a fundamental interest in creating a theoretical framework
for NESS on a par with Gibbs ensemble theory for equilibrium systems.
Driven diffusive lattice gases, first introduced by Katz et al. (1) and recently
reviewed in ref. 2, provide simple testing grounds for the properties of
a particular class of NESS. Based mostly on Ising lattice gases with
Kawasaki (spin exchange) dynamics, these models are represented by
microscopic Master equations which violate the usual detailed balance
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condition by maintaining a net probability current between configurations.
A particularly simple member of this class is the uniformly driven lattice
gas, in which spin exchanges along a specific lattice axis are biased by a
uniform force, remaining energetically controlled only in the transverse
subspace. Identifying the particles with (shielded) charges and the force
with an electric field, such models provide a starting point for the descrip-
tion of fast ionic conductors(3) or charged droplets in a microemulsion.(4)

One of the more remarkable features of this model, and many of its
relatives, is the presence of long-range correlations at all temperatures(6,7)

Though this behavior can be understood, within the context of a phenom-
enological (mean) field theory,(7) in terms of the violation of the traditional
fluctuation-dissipation theorem(8) it is clearly important to have an exact
microscopic version. Using a venerable tool, the high temperature series
expansion, Zhang et al.(6) (ZWLV in the following) investigated G, the
two-point correlation function for a system with infinite E. From the
master equation and the associated hierarchy, they argued that three-point
correlations are negligible and arrived at a closed set of equations for G
alone. To zeroth order in (1, both the equation and the solution are trivial.
To first order, the short-distance behavior of the solution was obtained
numerically, by truncating the equations at distances larger than a cutoff
value. The results exhibit significant anisotropy and agree quite well with
Monte Carlo data at high temperatures, i.e., T>6, in units of Tc(0), the
critical temperature of the E = 0 system. Analytically, the equations were
approximated by a Poisson problem with quadrupole symmetry. Its solu-
tion captures the behavior of G for large distances, displaying the r-2

power law tail, with the angle-dependent amplitude of the quadrupole
potential, in agreement with simulations. We should emphasize that the
high temperature series has a strong foundation: for BJ = Q, the steady state
distribution P* oc 1 is exactly known for all E,(9) so that we are expanding
about a well-defined zeroth order state. In this paper, we generalize the
analysis of ZWLV to include finite driving fields and solve the resulting
set of equations for G exactly, by computing its Fourier transform, the
structure factor S. The latter displays the characteristic discontinuity
singularity(1,7) at the origin, which translates into the r-d decay in real
(d-dimensional) space. Thus, recourse to numerical methods is not
necessary.

Another key feature of driven lattice gases is the existence of a line
of continuous transitions, falling outside the Ising universality class.(10)

In particular, it is remarkable that the critical temperature, TC(E), increases
with E, even though the drive reduces the effective nearest-neighbor coupling.
Apparently, the strong long-range part of the correlations dominates the
driven system and permits the onset of order at a higher Tc. ( 1 1 ) To support
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this argument, it is desirable to have a simple analytic method to estimate
both correlations and the critical temperature. The high temperature expan-
sion, and specifically our explicit form for the structure factor, serve that
purpose. Matching the series expansion of S to the expected critical
singularity, we obtain estimates for the critical line, and hence the phase
diagram to this (lowest) order in B.

Clearly, quantitative accuracy cannot be expected from a first-order
calculation. Nevertheless, it presents one of the simplest, currently available,
tools for the qualitative prediction of nonuniversal quantities in driven
lattice gases. Real-space renormalization group techniques for conserved
non-equilibrium spin systems are sorely lacking, and dynamic mean-field
theories,(12) while quantitatively more satisfying, are much more labor-inten-
sive. Our method is easily extended to general rate functions, anisotropic
interactions and higher dimensions. These results will be published else-
where.(13)

The paper is organized as follows: we first summarize the model defini-
tion and the method of ZWLV, resulting in a closed set of equations for
the two-point function G, correct to first order in BJ but for arbitrary drive
strength E>12J. These equations are then solved exactly in Fourier space.
Key consequences, such as the discontinuity singularity of the structure
factor and the critical line TC(E), are discussed. We conclude with a brief
comment on results in higher dimensions.

II. THE MODEL AND THE EQUATIONS FOR ITS TWO-POINT
FUNCTION

We first summarize the microscopies of the model. On each site f of
an (infinite) square lattice in spatial dimension d = 2, coupled to a heat
bath at inverse temperature B, we define an Ising spin variable Sr which
distinguishes occupied (S= +1) from empty (S= — 1) sites. Interacting via
the usual Ising Hamiltonian, H = -JE S r S v , nearest neighbors can
exchange positions, subject to the local energetics and a uniform force E
("electric field") which biases exchanges along a specific lattice axis (aligned
with the x-coordinate). To be specific, we choose Metropolis(14) rates,
min{l,exp-B[AH — aE]}, where r = 0, +1, -1 for jumps transverse,
along and against the field. Thus, "infinite" E implies that jumps along the
field always take place, provided they are allowed by the excluded volume
constraint, while jumps against E are completely suppressed. These rates
specify the master equation of the model, for the time-dependent configura-
tional probability P. A hierarchy of equations, connecting different TV-point
functions, follows as usual. We will be interested in steady-state averages
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only, so all time derivatives will be set to zero. Following ZWLV, we
expand the rate functions in powers of BJ; as an extension of their work,
which focused on E = oo only, we include the effect of large, but finite BE.
Thus, in a sense, the case here corresponds to B£»BJ. In practice, it is
sufficient to choose E > 12J, so that jumps along the drive occur with unit
rate, while those against E are suppressed by a factor of exp(-BE). In a
strict high temperature expansion, organized in powers of B, BE would also
appear as a small parameter, so that the range E<12J can also be
explored.(13)

Returning to our case, a set of equations for the two-point function,
G(r,r'} = <SrSr>, is easily derived from the master equation with the
expanded rates. At first order in BJ, one finds that G couples only to
three-point functions. Even though, in contrast to the equilibrium Ising
model, the latter do not vanish here,(15) they are numerically quite small
and are neglected. A closed set of equations for G emerges. By translational
invariance, G depends only on (x, y), the separation between the two
points r and r', and it is even in both variables.

The resulting equations depend on two parameters,

Up to and including only first order terms in K, we obtain a set of linear
equations for G,
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and, for all other non-zero x, y:

Here, we have written the equations in such a form that the left hand side
would simply be d,G(x, y). The ZWLV equations can be retrieved by
setting e = 0. The solution to these equations is most easily found in
Fourier space. In other words, we consider the structure factor:

which is real, since G is even. Some details on Fourier transforms are given
in Appendix A.

In the absence of J, the solution is trivial:

so that

reflecting, of course, that P* oc 1 in this case.(9) So, the information about
interactions is carried by S, defined by:

The correlations appearing in (1 ) , being proportional to K, are really the
transforms of S:

For convenience, we have introduced the notation

and will denote the anisotropic lattice Laplacian by
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Inserting (3) into (1, 2) and using the fact that 5 is real, we obtain

with similar equations for negative values of x or y and

Next, we seek to invoke the completeness relation (see the Appendix)
in order to project out an equation for 5. While the two additional terms
on the left hand side of (4) might appear to spoil this approach, we can just
treat them, for the time being, as unknown e-dependent coefficients,

and move them to the right hand side. Finally, for completeness, we need
an additional equation for x = y = 0, namely:

Now that we have equations for all integer values of x, y, we can use
Zx,yexp[ i(kx + py)] =(2n)2 S(k) S(p). The result is
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where L is the sum of terms on the right hand side, i.e.,

Of course, (8) is still an implicit equation for the structure factor, due
to the appearance of I1 and I2 on the right. To find the explicit solution,
we must determine the I's. Since we have two unknowns, we need two
linearly independent equations. The first of these follows from (6): Inserting
our result for L(k, p), Eq. (9) into the first equation of (6), we obtain

where

and

Due to a remarkable symmetry under (k, p) exchange,(31) the second
equation in (6) is not linearly independent from the first. Instead, an addi-
tional equation is provided by the value of G at the origin, i.e., 1 = G(0, 0) =
\S(k,p) which leads to

with
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and

Note that the singularity of 1 / A ( k , p) at the origin is cancelled by zeros in
the numerators, so that all of these integrals are perfectly finite. The explicit
solution now follows as

Together with (9), this determines the full structure factor, displaying the
expected proportionality S(k, p) oc K.

For later reference, let us briefly consider the equilibrium analog to
our results so far. To first non-trivial order in K, the two-point correlation
of the Ising model is given by the well-known form(5)

This results in a structure factor S e q(k, p ) = 1 + 2K(cos k + cos p) which is
of course isotropic.

III. DISCONTINUITY SINGULARITY AND CRITICALITY

In this section, we discuss two of the most interesting consequences of
the full solution,

First, we focus on the celebrated discontinuity of the structure factor near
the origin(1,7) This anomaly is a direct consequence of FDT violation and
is therefore expected to increase in magnitude with the strength of the
drive. For small k, p we find
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Thus, the discontinuity can be measured by

Of course, this is proportional to K. The dependence on E is captured by
the parameter e, which also enters into the expressions for the integrals I1

and I2 (see the Appendix for a discussion and some characteristic values).
Consistent with our expectation, we observe that the discontinuity increases
monotonically with E, from a limiting value of 0 for 12K<BE<1 to 5.48
for infinite drive.

Originally obtained from field-theoretic considerations, the form which
best displays this discontinuity is,(2,10)

near the origin. Here, n|| and n± measure the strength of thermal noise in
the parallel and transverse directions, respectively, while T|| and r± are the
anisotropic diffusion coefficients. Under equilibrium conditions, the FDT
enforces the equality

so that the familiar Ornstein-Zernike form re-emerges. By contrast, we
conclude that

in the driven case.
Next, we turn to an estimate for the critical temperature. If we had the

exact S(k, p), we could identify Tc by its divergence at some point. For the
usual system in equilibrium, we would look for the divergence of S(0, 0),
which is the susceptibility (T-1). However, with conserved dynamics at
half-filling, this quantity is fixed at zero, so that it is necessary to consider
l imk_0 S(k). In our case, as we just pointed out, this limit depends on the
direction along which we approach the origin. Thus, we appeal first to the
phenomenology, i.e., only l im p _ 0 S(0, p) diverges as T->TC. In terms of
(12), only n|/T| -» oc. In terms of co-operative behavior, this corresponds
to an instability against ordering into strips parallel to the drive only.
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Now, in a high temperature series, where only a finite number of terms
can be computed, every partial sum is finite. Instead, the radius of con-
vergence must be estimated. However, here we have only one non-trivial
term! To make any estimate, we turn to a search for the zero of S-1

instead. For the equilibrium case, S - 1 ( k , p) = 1—2K(cosk + cos p) +
O(K2), so that this procedure leads to Tc = 4J/kB. Of course, this is
the same result, had we expanded the exact equation for Bc ( e - 4 B c J +
2e - 2 B c J =1) in powers of BcJ and kept only the first non-trivial term.
Remarkably, this is also the mean field critical temperature.

Turning to the driven case, we consider an expansion of S-1 (given
that S=1):

and seek the zero of l i m p - o S - 1 (0 , p). The result is

Recall that I2 is proportional to K, so that their ratio is a B-independent
number (Table 1).

Before discussing the implications of this result, let us identify (up to
an overall constant) the various parameters in Eq. (12) using this
approach:

Referring to the discussion of I1 and I2 given in the Appendix, we see that
T||>T| for all E>0. This inequality confirms our choice to identify the
critical temperature by the vanishing of T± .

Returning to (14), let us discuss critical temperatures in units of J/kB.
First, note that I2 is negative and monotonically decreasing in e = exp( — B E )
(cf. Appendix). Therefore, TC(E) increases with E, taking its maximum at
infinite E where Tc( oo ) = 4.640. For the smallest BE, defined through the
inequality 12K<BE<<1, TC(E) approaches its lowest value of 4.0. The
agreement with the equilibrium result, Tc(0) = 4, is an artifact of the lowest
order of the expansion only.(13) Clearly, it is gratifying that even the lowest
nontrivial order of the high-temperature expansion generates a TC(E)
which increases with E, in qualitative agreement with simulation data.



Finally, let us consider the quantitative implications of our results by
focusing on the ratio TC(E)/TC(0). For E= oo, our approach yields the value
1.16, while MC simulations result in 1.40.(16) Thus, the series underestimates
this ratio, which can be understood as follows. The high temperature series
is known to overestimate critical temperatures, by underestimating fluctua-
tions. However, it has been argued(11) that the external drive tends to sup-
press fluctuations, so that we may expect Tc( oo) to be less sensitive to the
numerical errors introduced by the high temperature series than its equi-
librium counterpart. In this sense, the series expansion should be "better"
for a driven system. Indeed, we compare the series result of 4.64 to the
simulation value 3.18, finding a discrepancy of 46%. In contrast, for the
equilibrium case, we have 4.00 and 2.27 respectively, showing a much
higher discrepancy of 76%.

Finally, we could hope for better agreement of series and the exact Tc

as we move into higher spatial dimensions, where fluctuations become less
important. The results are certainly encouraging in d =3. In the series
approach, we obtain Tc(0) = 6 and rc( oo) = 6.34, signalling an increase of
6% due to the drive. This is in remarkably good agreement with the MC
data, which show a 7% increase.(17) Thus, even a low-order calculation can
produce some quantitatively reliable results.

IV. CONCLUSIONS

Within a high temperature series, we have derived the equations for
the two-point correlations of the uniformly driven lattice gas to lowest non-
trivial order in BJ, but finite BE. The exact solution of these equations
provides a successful qualitative description of two central features of our
model, namely, the discontinuity singularity of the structure factor at the
origin, associated with power-law correlations in the disordered phase, and
the anisotropy in the parallel and transverse diffusion coefficients which
controls the onset of criticality. Specifically, we observe that the magnitude
of the structure factor discontinuity increases with E, as a measure of
how seriously the FDT is violated in the driven system. We demonstrate
explicitly that criticality is marked by the vanishing of the transverse diffu-
sion coefficient, resulting in an estimate for TC(E) which increases with E,
consistent with MC data. On the quantitative side, we argue that fluctua-
tions, largely neglected in a series expansion such as ours, tend to increase
the ratio TC(E)/TC(Q). In higher spatial dimensions, where fluctuations are
less relevant, agreement of series and MC data improves, borne out by our
results in d=3.

Quantitative comparisons aside, the approach presented here provides
a convenient analytic complement to MC simulations, since it gives direct
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microscopic information about effective coarse-grained coupling constants
such as T± and T | | which appear in field theories. It is computationally
simpler than dynamic mean-field theory and easily generalized(13) to higher
dimensions or other driven lattice models. Thus, it can help to predict
qualitative phase diagrams and formulate effective field theories for a wide
range of non-equilibrium steady states.

APPENDIX

Here, we give a few details of our calculations. First, we briefly review
the conventions of our Fourier transforms and then turn to the evaluation
of the integrals contributing to (10).

Since our lattice consists of discrete points, we will let (x, y) be all
pairs of integers. For our case, it is most convenient to define the functions
Ux,y(k,p):

with continuous k, pe[—n,n]. The U x , y form a complete orthonormal
set:

The Fourier transform is defined in the usual way,

with inverse

Note that S(k, p) is real, since G(x, y) is even in both of its arguments.
Next, we turn to the integrals contributing to (10). In order to exhibit

their properties succinctly, it will be helpful to write the anisotropic
Laplacian in the form
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where the values of interest, A = 2( 1 + e) and B = 4 will be inserted at the
end. It is then easily seen from Eqs. (6) and (9), that all integrals are of the
general form

Clearly, R i j(A, B) = R j i(B, A). Specifically, we need all pairs (i, j) with
i,j = Q, 1, 2, 3 except (0,0). The calculations are simplified by a series of
identities, namely,

It is thus sufficient to compute Rio only. After performing the elementary
integral over p, the substitution 1 — cos k = 2t generates, up to prefactors,
the integral representation of Gauss' hypergeometric function.(18) Defining
z = A/B, we obtain
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We note in passing that all of these integrals can be expressed through
elementary functions, by reducing the hypergeometric functions down to
F(1/2, 1;3/2, — z) = z-1/2 arctan ^/z. It is now straightforward, if somewhat
tedious, to compute I1 and I2, and hence T|| and T|, as functions of
z = ( l+e)/2, in the region of interest 0<e = exp( —BE) < 1. Both I's are
negative and decrease monotonically. Since the explicit forms are not par-
ticularly illuminating, we quote a few representative values in Table 1.
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